

Functional polythiiranes: 5. Side chain liquid crystalline polythiiranes

C. Bonnans-Plaisance* and L. Corvazier

Laboratoire de Synthèse de Polymères Fonctionnels, URA CNRS 509, Université du Maine, av. O. Messiaen, 72017 Le Mans, France

and A. Skoulios

Groupe des Matériaux Organiques, Institut de Physique et Chimie des Matériaux, UM CNRS 46, 23 rue du Loess, 67037 Strasbourg, France (Received 29 July 1996; revised 10 October 1996)

For the first time, a series of polythiiranes bearing in the side chain biphenyl and 4-alkoxybiphenyl mesogenic groups connected to the backbone with spacer groups of different lengths were prepared by anionic ring-opening polymerization of the corresponding thiirane derivatives. Unlike the corresponding polyoxiranes described in the literature, large methylene or oxyethylene spacers were needed in polythiiranes to observe liquid crystalline properties. But like the polyoxiranes, the polythiiranes exhibited mainly high ordered smectic A and E mesophases which were characterized by the usual techniques: d.s.c., polarized optical microscopy and X-ray diffraction. © 1997 Elsevier Science Ltd.

(Keywords: side chain liquid crystalline polymers; polythiiranes; anionic ring opening polymerization)

INTRODUCTION

Polythiiranes are well known polymers¹ but few attempts to functionalize these materials have been reported. For some years, we have performed studies in order to synthesize several types of functional polythiiranes with various properties according to the chemical groups present in the side chain²⁻⁴. We have obtained these functional polymers by thiirane ring opening with highly nucleophilic quaternary ammonium dithiobenzoates; the chimioselectivity of these salts towards the thiirane ring allows the polymerization of functional thiirane monomers in high yields. The goal of this work was to display the influence of the sulfur atom in the main chain on the properties of the functional side chains.

In spite of many papers dealing with side chain liquid crystal (SCLC) polymers⁵, few studies have shown the dependence on phase transitions of the presence of a heteroatom in the main chain. Only a few examples of heteroatomic main chain SCLC polymers have been considered in the literature, e.g. polysulfones⁶, polyamines^{7,8}, polyesters⁹ and polyethers¹⁰⁻¹⁴. The flexibility of the ether backbone was used to explain the ordering of mesogenic pendent groups without spacer in SCLC polyoxiranes¹¹. Polythiiranes SCLC appear not to have been studied until now. The substituents of polythiranes, as for polyoxiranes, are located on every third atom along the main chain; these polymers containing C–S bonds larger than C–O bonds might also exhibit mesophases in the absence of a flexible spacer.

In a previous paper, we reported a new synthetic way to thiirane monomers bearing a biphenyl group as

substituent and their ring opening polymerization¹⁵. As may be expected, these polymers do not behave as liquid crystals, as they do not bear any substituent on the mesogenic group. The synthesis was extended to a large kind of thiirane monomers and various structural modifications were realized.

We report in this paper the characterization of the corresponding polythiiranes bearing 4-alkyloxybiphenyl mesogenic group connected to the main chain through various spacers. We have studied the influence of the spacer on the thermal properties for this novel class of polymers, of the terminal group, of the distance between mesogenic groups (copolymers). Our results are compared with those described in the literature for identical mesogens.

EXPERIMENTAL

Materials

4,4'-Dihydroxy biphenyl (97%), 4-phenylphenol (97%), dimethylsulfate, bromobutane, 2-chloroethanol, 1,4dibromobutane, 1,8-dibromooctane, bromoacetylbromide and 2,3-dimercaptopropanol were used as received, 6-Chloro-1-hexanol and 2-{2-[2-chloroethoxy]ethoxy} ethanol were commercial precursors for 6-iodo-1hexanol and 8-iodo-3,6-dioxaoctanol. N,N-Dimethylformamide (99+%, spectrophotometric grade) was used as a solvent for polymerization.

Techniques

¹H and ¹³C n.m.r. spectra were recorded on a Brucker AC 400 n.m.r. spectrometer; tetramethylsilane was used as a standard. Molecular weight of polymers were

^{*} To whom correspondence should be addressed

Compound	Solvent	δ (ppm, reference TMS)
3	CDCl ₃	3.94 (s, -O-CH ₃), 4.62 (sCH ₂ Br), 6.92–7.58 (m aromatic H)
4	CDCl ₃	1.00 (t, CH ₃ -), 1.60 (m, CH ₃ -CH ₂ -), 1.87 (m, CH ₃ -CH ₂ -CH ₂ -), 4.10 (t, -O-CH ₂ -), 4.62 (s, -CH ₂ Br), 6.90-7.60 (m, aromatic H)
7	CDCl ₃	3.90 (s, CH ₃ -O-), 3.90 (s, -CH ₂ Br), 5.31 (s, -CH ₂ -O-) 6.94-7.60 (m, aromatic H)
8	CDCl ₃	0.92 (<i>t</i> , CH ₃ -), 1.43 (<i>sx</i> , CH ₃ -CH ₂ -), 1.71 (<i>qn</i> , CH ₃ -CH ₂ -CH ₂ -), 3.82 (<i>s</i> , CH ₂ Br), 3.97 (<i>t</i> , -O-CH ₂ -), 5.25 (<i>s</i> , -CH ₂ -OCO-), 6.87–7.47 (<i>m</i> , aromatic H)
13	CDCl ₃	0.91 (t, CH ₃ -), 1.48 (sx, CH ₃ -CH ₂ -), 1.72 (qn, CH ₃ -CH ₂ -CH ₂ -), 3.82 (s, Br-CH ₂ -), 3.92 (t, CH ₃ -CH ₂ -CH ₂ -), 4.16 (m, -Φ-O-CH ₂ -CH ₂ -O-), 4.47 (m, -COO-CH ₂ -), 6.88 (m, aromatic H ortho to substituents), 7.39 (m, aromatic H, meta to substituents)
14	CDCl ₃	0.99 (t, CH ₃ -), 1.50–1.65 (m, CH ₃ -CH ₂ -, -COO-CH ₂ -CH ₂ -CH ₂ -CH ₂ -), 1.72–1.80 (m, CH ₃ -CH ₂ -CH ₂ -, -COO-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -), 3.83 (s, Br-CH ₂ -), 3.99 (t, -CH ₂ -O-Φ-Φ-O-CH ₂ -), 4.19 (t, -COO-CH ₂ -), 6.94 (m, aromatic H <i>ortho</i> to substituents), 7.46 (m, aromatic H, <i>meta</i> to substituents)
19	CDCl ₃	0.91 (t , CH ₃ -), 1.47 (sx , CH ₃ -CH ₂ -), 1.71 (qn , CH ₃ -CH ₂ -CH ₂ -), 1.87 (m , -OCO-CH ₂ -(CH ₂) ₂ -), 3.80 (s , Br-CH ₂ -), 4.00 (t , -CH ₂ -O- Φ - Φ -O-CH ₂ -), 4.25 (t , -COO-CH ₂), 6.86 (m , aromatic H ortho to substituents), 7.38 (m , aromatic H, meta to substituents)
20	CDCl ₃	0.91 (<i>t</i> , CH ₃ -), 1.30 (<i>m</i> , -OCO-(CH ₂) ₃ -(CH ₂) ₂ -), 1.48–1.56 (<i>m</i> , -OCO-(CH ₂) ₂ -CH ₂ -, -OCO-(CH ₂) ₅ -CH ₂ -, CH ₃ - CH ₂ -), 1.62–1.76 (<i>m</i> , CH ₃ -CH ₂ -CH ₂ -, -OCO-(CH ₂) ₆ -CH ₂ -, -OCO-CH ₂ -CH ₂ -), 3.76 (<i>s</i> , Br-CH ₂ -), 3.91–3.92 (<i>m</i> , -CH ₂ -O-Φ-Φ-O-CH ₂ -), 4.10 (<i>t</i> , -COO-CH ₂ -), 6.86 (<i>m</i> , aromatic H ortho to substituents), 7.37 (<i>m</i> , aromatic H, meta to substituents)
23	CDCl ₃	1.36–1.49 (<i>m</i> , O-CH ₂ -CH ₂ -CH ₂ -CH ₂ -), 1.71 (<i>qn</i> , -Φ-O-CH ₂ CH ₂), 1.74 (<i>qn</i> , -COO-CH ₂ -CH ₂ -), 3.76 (<i>s</i> , Br-CH ₂ -), 3.77 (<i>s</i> , CH ₃ -), 3.91 (<i>t</i> , -Φ-O-C ₂ -), 4.12 (<i>t</i> , -COO-CH ₂ -), 6.87 (<i>m</i> , aromatic H ortho to substituents), 7.40 (<i>m</i> , aromatic H, meta to substituents)
24	CDCl ₃	1.48–1.53 (m , -COO-(CH ₂) ₂ -CH ₂ -CH ₂ -), 1.72 (qn , -COO-(CH ₂) ₄ -CH ₂ -), 1.82 (sx , -COO-CH ₂ -CH ₂ -CH ₂ -), 3.83 (s , Br-CH ₂ -), 4.00 (t , - Φ -O-CH ₂ -), 4.20 (t , -COO-CH ₂ -), 6.95 (d , aromatic H ortho to substituents), 7.29 (t , aromatic H, 4'-position to substituent), 7.41 (t , aromatic H, 3-position to substituent), 7.52 (m , aromatic H, 2'-and 3'-position to substituent)
26	CDCl ₃	0.91 (<i>t</i> , CH ₃ -), 1.41 (<i>sx</i> , CH ₃ -CH ₂ -), 1.72 (<i>qn</i> , CH ₃ -CH ₂ -CH ₂ -), 3.64–3.68 (<i>m</i> , -Φ-O-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -O), 3.81 (<i>m</i> , Br-CH ₂ -COO-CH ₂ -CH ₂ -), 3.92 (<i>t</i> , -Φ-O-CH ₂ -CH ₂ -O), 4.10 (<i>t</i> , CH ₃ -CH ₂ -CH ₂ -), 4.27 (<i>t</i> , Br-CH ₂ -CH ₂ -), 6.88 (<i>m</i> , aromatic H <i>ortho</i> to substituents), 7.38 (<i>m</i> , aromatic H, <i>meta</i> to substituents)

Table 1 ¹H n.m.r. chemical shifts for monomer precursors

determined by size exclusion chromatography (s.e.c.) on Styragel columns calibrated with standard polystyrene samples. A Perkin-Elmer DSC 4 differential scanning calorimeter was used to determine the thermal transitions; heating and cooling rates were 10° C min⁻¹. A Leitz Ortho-Plan polarizing microscope equipped with a Mettler FP 82 hot stage was used to observe the textures of mesophases. The X-ray patterns were obtained using a CPS-120 curved counter from inel. The localized CuK_{α 1} X-ray beams were produced by a XRG-2500 generator (inel).

Synthesis of monomers

Schemes 1 and 2 outline the synthetic routes used for the preparation of the monomers showing the notation used in the text for the intermediate compounds. The ¹H n.m.r. spectra were in accordance with the structures of the whole intermediates. *Table 1* presents the ¹H n.m.r. data for the halogenated compounds used in the monomers synthesis.

4-Methoxy biphenyl (1). Synthesized according to ref. 25. Yield: 80%; mp 85°C.

4-Butoxy biphenyl (2). Synthesized according to ref. 26. Yield: 70%; m.p. 73–74°C.

4-Bromomethyl-4'-methoxybiphenyl (3) and 4-bromomethyl-4'-butoxybiphenyl (4). Both were synthesized according to ref. 27 from 1 and 2 with bromomethyl methylether in acetic acid. Yields > 90%; 3: mp 96°C; 4 mp 58°C.

4-Methoxy-4'-hydroxymethylbiphenyl (5) and 4-butoxy-4'-hydroxymethybiphenyl (6). Both synthesized according to a procedure described in ref. 28; 5: yield: 77%; mp 68°C and 6: yield: 46%; mp 51°C.

4-Methoxy-4'-hydroxybiphenyl (9). Synthesized according to ref. 29; yield: 34%; mp 182°C.

4-Butoxy-4'-hydroxybiphenyl (10). Synthesized according to ref. 30; yield: 35%; mp 172°C.

6-Iodo-1-hexanol and 8-iodo-3,6-dioxaoctanol. Synthesized from the corresponding commercial chlorides according to the well known procedure³¹ using NaI in acetone. Crude products were purified by fractional distillation. 6-iodo-1-hexanol: Eb₅: 120°C; 8-iodo-3,6dioxaoctanol: Eb₅: 140°C.

2-[(4'-Butoxy-4-biphenylyl)oxy]ethanol (11), 6-[(4'butoxy-4-biphenylyl)oxy]hexanol (12), 6-[(4'-methoxy-4biphenylyl)oxy]hexanol (21) and 6-(biphenylyloxy)hexanol (22). Synthesized with a literature procedure described for similar compounds¹⁹. The crude products were purified by recrystallization in ethanol. 11: yield: 30%; mp 167°C; 12: yield 55%; mp 142°C; 21: yield: 50%; mp 148°C; 22: yield: 58%; mp 101°C.

8-[(4'-Butoxy-4-biphenylyl)oxy]-3,6-dioxaoctanol

(25). A mixture of 30.45 mmol 10 (6% excess), 25 ml ethanol and 48.7 mmol KOH in 9 ml of water were heated and stirred until complete dissolution. 8-Iodo-3,6-dioxaoctanol (48.7 mol) was added dropwise. The mixture was refluxed for 15 h. After cooling the mixture solidified. Ethanol was evaporated in a rotavapor. The pasty solid was solubilized in hot toluene. The organic phase was decanted, dried and evaporated. A white solid was recuperated, washed with ether, dried and was

 Table 2
 Yields and melting points of bromoethanoates

Compound	Yield (%)	Melting point (°C)	Solvent
7	90	not crystallized	ether
8	88	not crystallized	ether
13	76	91	benzene
14	73	95	benzene
19	78	96	benzene
20	80	97	toluene
23	75	72–73	toluene
24	94	49-50	toluene
26	87	84	toluene

 Table 3
 Overall yields for the synthesis of monomers M1-11 and their melting points

Compound	Overall yield (%)	Melting point (°C)
M1	41	liquid
M2	27	liquid
M3	40	liquid
M4	12	liquid
M5	8	67-68
M6	5.5	73–74
M7	3	78
M8	12	83-84
M9	4	87-88
M10	9.5	60-63
M11	38	53-54

further purified by column chromatography (silica gel, toluene/THF, 90/10 eluent); yield 44%, mp 111°C.

4-[(4'-Butoxy-4-biphenylyl)oxy]butanol (17) and 8-[(4'butoxy-4-biphenylyl)oxy]octanol (18). According to a procedure described in the literature for similar compounds³², 10 was reacted with commercial 1,4-dibromobutane and 1,8-dibromooctane affording 4-(4-bromobutoxy)-4'-butoxybiphenyl (15): yield: 60%; mp 110°C and 4-(8-bromooctyloxy)-4'-butoxybiphenyl (16): yield: 45%; mp 129°C. The hydrolysis method of the literature³³ was applied to compounds 15 and 16, and gave the corresponding alcohols, 17: yield: 30%; mp 159°C; 18: yield: 58%; mp: 142°C.

(4-Methoxy-4'-biphenylyl)methyl bromoethanoate (7), (4-butoxy-4'-biphenylyl)methyl bromoethanoate (8), 2-[(4butoxy-4'-biphenylyl)oxy]ethyl bromoethanoate (13), 6-[(4-butoxy-4'-biphenylyl)oxy]hexyl bromoethanoate(14), 4-[(4-butoxy-4'-biphenylyl)oxy]butyl bromoethanooate (19), <math>8-[(4-butoxy-4'-biphenylyl)oxy]octyl bromoethanoethanoate (20), <math>6-[(4-methoxy-4'-biphenylyl)oxy]hexylbromoethanoate (23), <math>6-(biphenylyloxy)hexyl bromoethanoate (24), and <math>8-[(4-butoxy-4'-biphenylyl)oxy]-3,6dioxaoctyl bromoethanoate (26). The whole bromoethanoates were prepared by a suitable procedure usedin our laboratory⁴ using bromoacetylbromide and alcohols. Solvents varied with the solubility of compounds.Table 2 presents yields and melting points of bromoethanoates.

(4-Alkoxy-4'-biphenylyl)methylthiothiiranes M1-3 and (2,3-epithiopropyl)thioethanoate monomers M2, M4-11 were obtained by the procedure described in ref. 3 from mercaptomethylthiirane³⁴ prepared with 2,3-dimercaptopropanol and bromides 3, 4, 7, 8, 13, 14, 19, 20, 23, 24 and 26. They were purified by silica gel chromatography with cyclohexane/acetone mixtures as eluent, the amount of acetone depending on each product (varying from 5 to 15%). Table 3 presents the yields and the melting points of the whole series of monomers. Their ¹H n.m.r. data in CDCl₃ are described in Table 4.

Polymerizations

Polymerizations were carried out in solution in N,Ndimethylformamide (monomer concentration = 0.25mol⁻¹), under nitrogen, at 30°C, for 10 min. The glassware was dried. Before adding the initiator (tetramethylammonium dithiobenzoate)² in solution in DMF with a syringe, the monomer in solution was degassed and the polymerization flask purged with nitrogen; this operation was repeated five times and the flask finally maintained under a nitrogen atmosphere. The ratio monomer/initiator $([M_0]/[\bar{I}_0] = 50)$ would determine the polymer molecular weight. Bromobutane was added at the end of the reaction to avoid an increase in molecular weights by oxidation of thiolate end groups in disulfides; the reaction mixture was precipitated in ether. The filtered polymers were dried under vacuum, dissolved in chloroform at ambient temperature (hot chloroform for P8 and P9) and purified by further precipitation in methanol. This treatment was repeated three times. The conversions were quantitative in almost all cases; but yields were sometimes lower due to losses during the purification process.

RESULTS AND DISCUSSION

Monomer synthesis

Monomers with short spacers: M1-4 (*Scheme 1*) were prepared from the corresponding 4-(4'-alkyloxy)biphenyl bromomethane as previously described. For monomers M1 and 3, a direct link to the thiirane ring using a sulfur function was obtained in one step by nucleophilic substitution of mercaptomethylthiirane (MMT) on 4-(4'-alkyloxy) biphenyl bromomethanes. Monomers M2 and 4 were prepared in two steps from 4-(4'-alkyloxybiphenyl) methanol; the ester linkage was introduced by reaction with bromoacetylbromide; in a second step the thiirane ring was attached by nucleophilic substitution of MMT on the corresponding bromoacetates.

The monomers with larger spacers M5-11 (Scheme 2) were prepared according to the same synthetic method with an additional step to link the spacer to the mesogenic core.

For this purpose, the 4-(4'-alkyloxyphenyl)phenols were reacted with the corresponding chloroalcohol; in order to improve some yields, iodoalcohols were also used. The reactions with the appropriate dihalide were also performed; in this case an hydrolysis step is needed. Both methods gave similar yields. The best overall yields (40%) were obtained for the shortest synthesis **M1**, **3** and for **11**. The spectroscopic data (¹H, ¹³C n.m.r.) were in accordance with the proposed structures and are described in the Experimental section.

Polymerizations

The polymer structures are summarized in Scheme 3. The polymerizations were carried out for all monomers under the same conditions: at 30°C, in DMF as a solvent and with tetramethylammonium dithiobenzoate as an initiator. The polymerizations were rapidly completed². The results of the polymerizations are reported in Table 5. Some polymers: P7–9 were not quite soluble in DMF and precipitated out during the polymerization; furthermore, P8 and 9 were not soluble in usual solvents at

Lable 4 H.	n.m.r. dats	a of monor	mers thura.	ne (CDCI ₃	, o, TMS)														
CH ² a ^a CH ² CH ² C	а , ×	$R_1 = -CH_2$ $R_2 = -CH_2$ $R_3 = -CH_2$ $R_3 = -CH_2$	- 	Н ₂ -О-СН ₂ б	CH ₂ -O-CF	ł _r сн,-о- j		$z \begin{cases} z_{1} = -\infty \\ z_{2} = -0 \\ z_{3} = -H \end{cases}$	cH ₃ s cH ₂ CH ₂ CI	H ₂ CH ₃									
$\sum \sum $	E =	R4 = -CH2 - d	-cc-H2- 0 e	CH ₂ -CH ₂ -(f g	сH ₂ -CH ₂ -(h h	cH ₂ -CH ₂ -C	0.0-2H2-0-	ہ ب											
Monomer	a: 2 H	b: 1 H	c: 2H	d: 2 H	e: 2 H	f: 2 H	ຣມ	ч	i: 2 H	j: 2 H	k: 2 H	l: 2 H	m: 2 H	n: 2 H	o: 1 H	p: 2 H	q: 2 H	r: 2 H	s: 3 H
$\mathbf{M}\mathbf{I}$ \mathbf{R}_{1} , \mathbf{Z}_{1}	2.22 d 2.53 m	3.05 m	2.48 m 3.02 m		3.90 <i>.s</i>						7.52 t	7.45 m	7.45 m	6.97 d 7.31 t	3.90 <i>.</i> s				We have a
$M2 R_2, Z_1$	2.21 <i>d</i> 2.50 <i>d</i>	3.10 <i>m</i>	2.68 m 3.06 m	3.39 s	5.29 s						7.41 <i>t</i>	7.55 m	7.55 m	6.99 d 7.32 t	3.90 <i>s</i>				
M3 R ₁ , Z ₂	2.22 <i>d</i> 2.56 <i>d</i>	3.10 <i>m</i>	2.47 m 3.01 m		3.91 <i>s</i>						7.53 t	7.42 m	7.42 m	6.90 d 7.31 t		4.067	1.81 sp	1.50 s.v	1.02 1
M4 R ₂ , Z ₂	2.14 <i>d</i> 2.41 <i>d</i>	3.00 m	2.62 m 3.00 m	3.31 s	5.22 s						7.35 <i>t</i>	7.47 m	7.47 m	6.87 d 7.24 t		3.97 t	1.71 qn	1.43 sx	0.92 <i>t</i>
M5 R ₃ , Z ₂	2.20 <i>d</i> 2.50 <i>d</i>	3.03 m	2.63 m 3.01 m	3.27 <i>s</i>	4.23 t	3.801	3.66 <i>m</i> 2H	3.66 <i>m</i> 2H	3.62 m	4.09 m	6.88 <i>t</i>	7.38 d	7.38 d	6.88 t	3.92 t	1.71 qn	1.43 sx	1 16.0	
M6 R4, Z ₂	2.19 <i>d</i> 2.48 <i>d</i>	3.03 d	2.65 m 3.00 m	3.30 s	4.43 <i>t</i>					4.141	6.86 d	7.39 d	7.39 d	6.86 d		3.91 t	1.70 q	1.42 <i>sx</i>	0.91 t
M7 R 4, Z ₂	2.20 <i>d</i> 2.49 <i>d</i>	3.01 d	2.63 m 2.98 m	3.24 <i>s</i>	4.151	1.80 m			1.80 <i>m</i>	3.93 /	6.88 d	7.39 d	7.39 d	6.88 d		3.911	1.75 m	1.45 sx	1 10.0
M8 R ₄ , Z ₂	2.21 <i>d</i> 2.50 <i>d</i>	3.02 d	2.63 m 3.02 m	3.28 s	4.08 t	1.754	1.45 <i>m</i> 4H		1.63 <i>m</i>	3.90 t	6.88 d	7.40 d	7.40 d	6.88 d		3.901	1.71 m	1.30 m	0.94 t
M9 R4, Z ₂	2.21 d 2.49 d	3.03 d	2.63 m 3.00 m	3.25 <i>s</i>	4.06 t	1.59 m	1.43 m 4H	1.30 m 4H	1.71 m	3.91 1	6.90 d	7.40 d	7.40 d	<i>p</i> 06.9		3.92 1	1.71 m	1.30 m	0.941
M10 R4, Z1	2.21 <i>d</i> 2.50 <i>d</i>	3.03 d	2.63 m 3.00 m	3.25 s	4.091	1.75 q	1.42 m 4H		1.63 q	3.921	6.88 d	7.40 d	7.40 d	6.88 d					3.77 <i>s</i>
M11 R4, Z3	2.29 <i>d</i> 2.55 <i>d</i>	3.11 <i>d</i>	2.71 m 3.08 m	3.31 s	4.181	1.81 q	1.50 <i>m</i> 4H		1.70 q	4.00 <i>t</i>	<i>b</i> 96.9	7.40 t	7.53 m	7.53 m	7.30 t				
d: doublet; m:	multiplet;	q: quadru	plet; qn: qı	uintuplet; s	s: singlet; s	x: sextuple	t; r: triplet									-			

Scheme 3 The studied polymers

Table 5 Results of polymerizations: $[M_O] = 0.25 \text{ moll}^{-1}$; solvent: DMF; 20°C

Polymer	$[M_{\rm O}/[I_{\rm O}]^a$	Yield	$M_{\rm n}$ calculated (g mol ⁻¹)	M_n^b (Eq PS)	M _w ^b (Eq PS)	$\frac{I_{\rm p}^{\ b}}{(M_{\rm w}/M_{\rm n})}$
P1	50	95%	15000	16400	22 300	1.36
P2	17	98%	6000	3190	5780	1.81
P3	50	97%	17000	7000	11000	1.57
P4	67	98%	27 000	28 000	55 000	1.98
P5	50	93%	26 000	18 000	38 000	2.11
P6	50	91%	21 600	14 500	32 340	2.23
P7	50	92%	23 000	5849	20 740	3.55
P8 ^c	50	98%	24 400			
P9 ^c	50	94%	25 800			
P10	50	92%	22 3 50	11 590	14980	1.29
P11	50	95%	20 800	30 5 50	58 930	1.93

^{*a*} Calculated assuming a living polymerization: $DP_n = [M_0]/[I_0]$

^b These results are obtained from s.e.c. analysis (THF) and expressed in equivalent polystyrene

^c P8 and P9 are insoluble in THF

ambient temperature and could not be analysed either by s.e.c. or by light scattering. The large polydispersity index for P7 probably results from the low solubility of the polymer in the polymerization mixture. The average number molecular weights M_n calculated by s.e.c. (expressed in polystyrene standard) are rather different than those expected for a polymerization. An accurate measurement of the average molecular weights was difficult for both reasons. As for methylthiirane and other thiirane monomer polymerizations¹⁶, the initiation step is slower than the propagation step. So, for low $[M_0]/[I_0]$ the entire initiator is not consumed and the average molecular weights observed may be larger than the expected ones. Furthermore, underestimated molecular weights were observed by ourselves⁴ and by others¹⁷ on s.e.c. determinations resulting from a decrease of hydrodynamic volumes because of the comb-like structure of these polymers. Although phase transitions are influenced by molecular weight¹⁸ we did not study this problem in this work. We consider that polymers studied here have degrees of polymerization high enough to hinder molecular weight dependence of the phase transitions.

All polymers were fully characterized by their ¹H and ¹³C n.m.r. spectra (*Tables 6* and 7). Statistical copolymers with methylthiirane (MT) were prepared from M3 (34, 57, 82, 86 mol%). Their ¹H and ¹³C n.m.r. spectra clearly showed the signals of both monomer units. Their characteristic data are given in the Experimental section.

Table 6 ¹ H	n.m.r. dats	a of polyme	rs in CDC	1 ₃ (TMS, ¿	s, ppm)														
		R R ₂ =	င်မှ _{င်} င်မှ _{င်} င်မှ	CH2- CH2-CH2-C c f	ъсн _л сн _л -(g h	o-ch ₂ ch ₂	¢.	z z z z z z z z z z z z z z z z z z z	= -OCH3 = -OCH2 = -OCH2C	Н ₂ СН ₂ СН ₃ с	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
	. = =		-CH ₂ -G-0- d 0	-CH ₂ -CH ₂ - e f	CH ₂ -CH ₂ -C g h	CH2-CH2-C h g	ЗН₂-СН₂-О і ј		0										
Polymer	a: 2H	b: 1H	c: 2 H	d: 2 H	e: 2 H	f: 2 H	g: 2 H	.e	i: 2 H	j: 2H	k: 2 H	l: 2H	m: 2 H	n: 2 H	0	p: 2 H	q: 2 H	r: 2H	s: 3 H
$\mathbf{P1} \mathbf{R}_1, \mathbf{Z}_1$	2.75 m	2.75 m	2.75 m		2.88 <i>m</i>						7.65 t	7.31 qd	7.31 qd	6.72 <i>d</i> 7.20 <i>t</i>					3.70 s
P2 R ₂ , Z ₁	2.70 m	2.85 m	2.85 m	3.15s	5.18.5						7.25 m	7.40 m	7.40 m	6.72 d 7.15 m					3.75 <i>s</i>
P3 R 1, Z2	2.75 m	2.75 m	2.75 m		3.69 m						7.42 m	7.25 m	7.25 m	6.72 <i>d</i> 7.20 <i>t</i>		3.88 m	l.69 m	1.40 <i>m</i>	0.90 /
P4 R ₂ , Z ₂	2.68 m	2.83 m	2.83 m	3.11 <i>s</i>	5.10 s						7.27 m	7.40 m	7.40 m	6.72 <i>d</i> 7.12 <i>m</i>		3.82 m	1.65 m	1.45 m	0.851
P5 R ₃ , Z ₂	2.90 m	3.10 <i>m</i>	2.98 m	3.25 <i>s</i>	4.21 m	3.72 m	3.60 m	3.60 <i>m</i> 2.H	3.56 m	4.05 m	6.88 m	7.38 m	7.38 m	6.88 <i>m</i>		3.90 m	1.69 qt	1.41 sx	0.91 /
P6 R4, Z2 P7 R4, Z2	2.95 <i>m</i> 3.00 <i>m</i>	3.11 m 3.14 m	3.02 <i>m</i> 3.04 <i>m</i>	3.30 <i>s</i> 3.28 <i>s</i>	4.41 <i>s</i> 4.16 <i>s</i>	1.815			1.81 <i>m</i>	4.09 m 3.92 m	6.88 d 6.87 m	7.39 qd 7.41 m	7.39 qd 7.41 m	6.88 <i>d</i> 6.87 <i>m</i>		3.91 t 3.92 m	1.73 qt 1.75 m	1.45 <i>sx</i> 1.48 <i>m</i>	0.95 <i>t</i> 0.95 <i>t</i>
P8 R4, Z2 P9 R4, Z2	3.01 m 3.00 m	3.13 <i>m</i> 3.12 <i>m</i>	3.05 m 3.05 m	3.29 <i>s</i> 3.29 <i>s</i>	4.10 <i>t</i> 4.10 <i>t</i>	1.75 <i>m</i> 1.75 <i>m</i>	1.46 <i>m</i> 1.45 <i>m</i>	1.34 <i>m</i> 4 H	1.75 m 1.75 m	3.93 <i>t</i> 3.94 <i>t</i>	6.90 m 6.90 m	7.40 7.42 d	7.40 <i>d</i> 7.42 <i>d</i>	6.89 m 6.90 m		3.91 <i>t</i> 3.91 <i>t</i>	1.64 <i>m</i> 1.63 <i>m</i>	1.46 <i>m</i> 1.4 <i>m</i>	0.96 <i>t</i> 0.96 <i>t</i>
P10 R4, Z1 P11 R4, Z3	3.00 m 2.99 m	3.12 <i>m</i> 3.12 <i>m</i>	3.04 m 3.04 m	3.28 <i>s</i> 3.27 <i>s</i>	4.10 <i>m</i> 4.10 <i>m</i>	1.76 <i>m</i> 1.76 <i>m</i>	1.46 <i>m</i> 1.41 <i>m</i>		1.64 <i>m</i> 1.65 <i>m</i>	3.91 m 3.92 m	6.90 m 6.92 d	7.42 <i>d</i> 7.36 <i>t</i>	7.42 d 7.50 m	6.90 m 7.50 m	7.25 <i>t</i>				3.78 <i>s</i>
d: doublet; m	: multiplet;	; <i>qd</i> : quadrı	ıplet; qt: q	uintuplet;	s: singulet;	sx: sextup	let; t: triple	et											

Functional polythiiranes: C. Bonnans-Plaisance et al.

	3 C24			35 13.98	44 14.08	11 13.74	27 13.88	27	27 13.88	27 13.88	55.29	
	G			5 19.	0 19.	19.	1 19.	1 19.	3 19.	4 19.		
	C22	-	~	l 31.3	31.4	31.0	34.1	34.3	l 34.3	4 34.3		
	C21	55.6	68.1	61.9	68.10	70.3	63.71	67.3	67.8	67.74		_
	C20	156.82	156.62	156.25	156.65	157.64	157.39	157.96	158.12	158.18	158.62	126.64
	C19	126.72	126.89	126.89	126.84	114.58	114.77	114.74	114.71	114.73	114.71	128.07
	C18	126.85	126.92	126.65	126.91	127.44	127.61	127.61	127.59	127.59	127.63	126.60
	C17	140.48	140.57	140.48	140.54	133.90	132.87	133.10	133.18	133.22	133.39	140.75
	C16	140.48	133.28	140.48	133.29	133.41	133.89	133.40	133.28	133.22	133.18	133.50
	C15	128.74	128.51	128.68	128.47	127.44	127.67	127.61	127.59	127.59	127.63	128.71
	C14	129.04	128.96	128.84	128.93	114.69	114.87	114.74	114.73	114.73	114.14	114.74
CH2CH3 23 24	C13	133.38	156.57	132.98	156.65	158.10	158.33	158.25	158.22	158.22	158.15	158.61
Н ₃ Н2 1 22	C12						67.72	67.73	67.73	67.98	67.80	67.80
2, = -00 2, = -00 2, = -H 2, = -H	C11							25.90	29.26	26.36	34.31	34.31
2 2 2	C10					70.59			25.81	28.61	25.80	25.79
н, о	60					68.80				26.07		
H2-O- 10 12 12	C8					67.28				25.87		
Э-СН ₂ С э H2-СН ₁ 0	C1					67.56			25.74	28.61	23.73	25.72
1 ₂ CH ₂ -(7 8 (-CH ₂ -C	C6					69.60		25.46	28.56	29.25	28.55	28.54
4 <u>7</u> -0-CI	cs	26.95	62.83		62.77	64.36	65.81	62.19	65.49	65.61	65.48	65.48
cH, c, cH, c, cH, c,	5		31.51		31.40	33.99	31.38	31.38	31.38	31.38	29.24	29.21
* H * H * H * H * H * H * H * H * H * H	ម	36.56	37.45	36.30	37.05	36.82	37.12	37.24	37.07	37.06	37.05	37.04
	5	47.00	46.64	46.87	46.63	46.27	46.58	46.79	46.27	46.74	46.36	46.56
×	5	35.70	35.72	35.52 4	35.74	35.54	35.81	35.80	35.79	35.80	35.76	35.76
$+$ $\frac{1}{2}$	0 Q		70.22		70.23	70.09	70.26	70.26	70.28	70.28	70.28	70.28
	Polymer C	P1 R1, Z1	P2 R2, Z1 1	P3 R1, Z2	P4 R2, Z2 1	P5 R3, Z2 1	P6 R4, Z2 1	P7 R4, Z2 1	P8 R4, Z2 1	P9 R4, Z2 1	P10 R4, Z1 1	P11 R4, Z3 1

Table 8	Phases	transitions	in	$^{\circ}C$	(enthalpy in)	Jg	1
				-	(

P5	Sm X∙		$n E \leftarrow \frac{11}{10}$	$\frac{5(41.84)}{5(23.85)}$ Iso		
P6	SmE⊷	$148(51.04) \\ 139(52.30)$	lso			
P7	Sm E⊷	114.6(5.42) 100.5(1.97)	Sm A.	136.8(15.03) 133(13.74)	$\rightarrow N \xrightarrow{150.6(15.62)}$ Iso 145(15.16)	
P8	SmX↔	122(2.38) 114.8(3.79)	→ Sm E∢	$\underbrace{128.3(12.40)}_{124.4(12.64)}$	$\Rightarrow \operatorname{Sm} A \xleftarrow{149(15.78)}_{144.1(16.01)} \operatorname{Is}$	0
Р9	SmX↔	125.1 ^{<i>a</i>} 120.5 ^{<i>a</i>}	∙ Sm E∢	127.6 ^{<i>a</i>}	\rightarrow Sm A $\stackrel{(149.7(16.58))}{\leftarrow}$ Is	0
P10	Sm E	110(10.88) 107(10.88)	Sm A	127(12.55) 123(12.55)	Iso	
P11	Sm X	45(1.67) 43(1.25)	Sm A	<u>55(13.39)</u> <u>49(12.37)</u>	Jso →	

Sm X = No identified smectic, Sm E = smectic E, Sm A = smectic A, N = nematic, Iso = isotrope liquid

"The corresponding enthalpies cannot be evaluated as both peaks are too close

Thermal properties and optical textures

Investigations of the LC properties of polymers P1-4 which contain short spacers gave no results. These spacers do not appear large enough to decouple efficiently the motions of the main chain from those of the side chains. The M3/MT copolymers did not give any LC properties: the extension of the distance between two mesogenic groups along the main chain did not produce any effect on the LC properties.

The other polymers P5-11, exhibit mesophases even with an unsubstituted biphenyl group (P11). The phase transition temperatures of the polymers are summarized in Table 8. Some of them show several transitions. Glass transition temperatures were not easily assigned for the whole series of polymers but this is usual for smectic SCLC polymers^{8,19,20}. The mesophases were identified by observation of their typical textures on polarized optical microscope and by X-ray diffraction patterns. All these polymers exhibit at least one mesophase: smectic A but also highly ordered smectic E. Under the smectic E mesophase, polymers P5, 8, 9, 11, have shown a slight transition which could correspond to another smectic mesophase. But the corresponding changes of texture were only observed on the optical microscope in the case of P8 and 9. At the present time we cannot say anything more about these transitions.

The typical focal-conic texture was observed for the smectic A mesophases (*Figure 1a*) of polymers **P7**, **8**, **10** and **11**. On cooling the focal-conic appeared striated (*Figure 1b*); this modification of the texture is characteristic of a transition from a smectic mesophase to a highly ordered mesophase which was identified by the X-ray pattern as a smectic E. The optical texture of the smectic E mesophase of polymer **P5** was not at all characteristic and was identified by X-ray diffraction; the same texture has already been observed in polyoxetanes¹⁴. Concerning **P8** and **9**, the last transition observed on cooling smectic

Figure 1 Observed textures in polymer P8. (a) $144.1^{\circ}C$ (microscopy): smectic A mesophase, focal conics. (b) $126^{\circ}C$ (microscopy): smectic E mesophase, striated focal conics. (c) $118.6^{\circ}C$ (microscopy): ultimate change of texture, not identified

E is signalled by an increase of the striations to such an extent that the focal conics are almost completely hidden (*Figure 1c*).

X-ray diffraction

In the X-ray diffraction patterns of polymers P5-11, sharp diffractions characteristic of smectic monolayer structures were observed in the small angles region (*Figure 2*). A broad diffraction in the wide angle region confirmed the presence of a smectic A mesophase. The other smectic mesophase observed at lower temperatures, exhibited three sharp diffractions over the wide angle region. The positions of the diffraction are characteristic of a pseudo rectangular network of mesogenic groups in the layers owing to the pgg no. 8

Figure 2 X-ray diffraction pattern of polymer P7 at 120°C

Figure 3 Lamellar distances of polythiiranes smectic mesophases vs length of spacers

space group. This kind of ordering fits with a smectic E mesophase. The *d*-spacing determined from both mesophases were very similar but varies with the length of the spacer; a good correlation appears for the lamellar distance as a function of the spacer length in polymers P6-9 (*Figure 3*). For polymer P8 the *d*-spacing derived from X-ray diffraction (32.9 Å) is consistent with the length of the lateral group: 27.98 Å calculated from a computer drawn model. Polymer P5 whose spacer length lies probably between P8 and 9 exhibits a *d*-spacing (33.48 Å) which effectively takes place on the graph between P8 and 9. The *d*-spacing determined for P10 and 11 are, respectively, 32.24 and 28.01 Å. To summarize our results, a consistent scheme of thermotropic liquid crystal polymorphism is drawn (*Figure 4*).

DISCUSSION

In this series of polymers, the presence of large and

Figure 4 Thermotropic liquid crystal polymorphism for polymers P6-11

flexible spacers is necessary to achieve LC properties. Many reports have treated the effect of a spacer on the mesomorphic properties of SCLC polymers²¹. Most of them deal with carbon main chains and the spacer effect on a heteroatomic main chain is seldom examined. Polyoxiranes which have been extensively described¹¹ exhibited smectic phases without a spacer, while in polymers **P2** and **4** a spacer constituted of five atoms -CH₂-S-CH₂CO-O-CH₂- cannot efficiently decouple the motions of the main and side chains. This kind of spacer with an ester and a thioether linkage appears rather rigid and is not useful for decoupling the side group from the polythiirane chain; this is all the more so, as the polythiirane chain itself is less flexible than polyoxirane.

The behaviour of alkoxy-biphenyl polythiiranes may be also compared to the behaviour of alkoxybiphenyl polyoxetanes¹⁴; effectively, polyoxetanes linked to alkoxy-biphenyl groups by various spacers do not behave as LC. The flexibility of the polyoxirane main chain seems to be involved in explaining the easy ordering of mesogenic cores when LC properties are observed with short spacers. In the case of the polythiiranes, on the contrary, the presence of the large sulfur atom in the backbone and in the side chain seems to decrease the anisotropic orientation of the mesogenic side-chains. A molecular drawing of polymer P8 exhibits a steric hindrance between both sulfur atoms which perhaps reduces the flexibility of the main chain. Furthermore, the flexibility and the conformational mobility of a polymer backbone are larger for lower molecular weights. The polythiiranes described here have rather high degrees of polymerization while molecular weights of the corresponding polyoxiranes were not reported. When the spacer is large enough to allow the building of mesophases, its length controls the nature and the number of mesophases (P6-9) as was previously described, but the isotropization temperatures are nearly in the same range. Changing the nature of the spacer also leads to significant modifications in LC properties; polymers P5 and 9 may be compared in relation to the number of atoms in the spacer. The oxyethylene spacer (P5) affords a single ordered mesophase at a lower temperature.

The influence of the terminal group in the mesogen was studied for carbon main chains by some authors but it is difficult to rationalize their results because different

mesogens, different spacers and different main chains were examined. Using biphenyl as a mesogen and polymethacrylate as a main chain, Finkelman et al. observed the absence of mesophase when the terminal group is an hydrogen atom and the change from a nematic mesophase to a smectic one when the terminal group grew from a methoxyl group to ethoxyl, pentoxyl or hexyloxyl groups. On the contrary, Rodekirch et al. observed the same smectic phase with methoxyl or butoxyl terminal groups in the case of a phenylbenzoate mesogen and a polymethacrylate main chain. In the described polythiiranes, the influence of the terminal group appears obvious on comparing the LC properties of polymers P8, 10 and 11. Without an alkoxy terminal group, the transitions temperatures decrease drastically and the smectic E phase disappears. As was observed by other authors with polyoxiranes¹², the length of the alkoxy terminal group does not influence the nature of the mesophases but a slight increase of the transition temperatures is observed when we substituted $-OC_4H_9$ for -OCH₃.

CONCLUSION

We have demonstrated in this study the ability of polythiiranes to act as main chains for liquid crystalline polymers. Unlike the previously described polyoxiranes, large and flexible spacers were needed to observe the liquid crystalline properties of biphenyl mesogens linked to polythiiranes. The mesophases obtained in polythiiranes are essentially smectic and the highly ordered smectic E phase was observed with nearly all of the polymers as in the corresponding polyoxiranes.

This obvious dependence of the behaviour of SCLC polyoxiranes and polythiiranes with the nature of the main chain is in accordance with the findings of Bresci et al.²³ but is also in accordance with the contradictory assumption of Finkelman et al.24 since the same mesogens gave the same mesophases

At the present time, we are continuing with this work, considering the effects of various mesogenic groups on the thermal properties of polythiiranes and investigating the macroscopic orientation by mechanic effects of some polythiiranes.

ACKNOWLEDGEMENT

The authors thank Professor G. Levesque (Université de Bretagne-Sud) for his interest in this work and helpful discussions.

REFERENCES

- Sigwalt, P. and Spassky, N., Ring Opening Polymerization, ed. 1 K. J. Ivin and T. Saegusa. Elsevier, London, 1988, Vol. 2, p. 603.
- Bonnans-Plaisance, C. and Levesque, G., Polymer, 1991, 32, 2. 1318
- 3 Bonnans-Plaisance, C., Courric, S. and Levesque, G., Polym. Bull., 1992, 28, 489
- 4 Bonnans-Plaisance, C., Levesque, G. and Rétif, Ph., Polym. Bull., 1995. 34. 141. Percec, V. and Pugh, C., Side Chain Liquid Crystal Polymers. 5.
- MacArdle, Blackie, Glasgow, 1989, p. 53 Braun, D., Arnold, N., Liebman, A. and Schmidtke, I., Makromol. 6.
- Chem., 1993, 194, 2687 Masson, P., Heinrich, B., Frère, Y. and Gramain, P., Macromol. 7.
- Chem. Phys., 1994, 195, 1199. Rodriguez-Parada, J. M. and Percec, V., J. Polym. Sci. Part A. 8
- 1986. 24. 1363.
- Fujishiro, K. and Lenz, R., Liq. Crystals, 1992, 12, 561. Ujiie, S. and Iimura, K., Polymer J., 1992, 24, 427. Akiyama, E., Nagase, Y. and Koide, N., Makromol. Chem. Rapid Q
- 10.
- 11. Commun., 1993, 14, 251.
- 12. Akiyama, E., Ohtomo, M. and Nagase, Y., Macromol. Chem. Phys., 1995, 196, 3391.
- 13. Pugh, C. and Percec, V., Polym. Bull., 1986, 16, 521.
- Kawakami, Y., Takahashi, K. and Hibino, H., Macromolecules, 14. 1991, 24, 4531.
- 15. Bonnans-Plaisance, C., Levesque, G. and Pomepui, B., Polymer, 1993, 34, 2003.
- Bonnans-Plaisance, C., Levesque, G. and Midrak, A., Eur. 16. Polym. J., 1994, 30, 239.
- 17. Duran, R. and Strazielle, C., Macromolecules, 1987, 20, 2853.
- Portugall, M., Ringsdorf, H. and Zentel, R., Makromol. Chem., 18. 1982, 183, 2311
- Finkelman, H. Happ, M., Portugall, M. and Ringsdorf, H., 19. Makromol. Chem., 1978, 179, 2541
- Hahn, B., Wendorff, J. H., Portugall, M. and Ringsdorf, H., 20.Colloid Polym. Sci., 1981, 259, 59.
- 21. Percec, V. and Pugh, C., Side Chain Liquid Crystal Polymers. MacArdle, Blackie, Glasgow, 1989, p. 57.
- Rodekirch, G., Rübner, J., Zschuppe, V., Wolff, D. and Springer, J., Makromol. Chem., 1993, 194, 1125. 22.
- Bresci, B., Frosini, V., Lupinacci, D. and Magagnini, P. L., Makromol. Chem. Rapid Commun., 1980, 183, 1. 23.
- Finkelmann, H., Ringsdorf, H. and Wendorff, J., Makromol. 24. Chem., 1978, 179, 273.
- Hünig, S., Markl, G. and Sauer, J., Integriertes Organisches 25 Prakrikum. Verlag Chemie, New York, 1979, p. 199. Brewster, M. C. and Putmann, I., J.A.C.S., 1939, 3083
- 26.
- Vavon, G., Bolle, J. and Colin, J., Bull. Soc. Chim. Fr., 1939, 6, 27 1025.
- 28. Wasserman, H. H., Mariano, P. S. and Keehn, P. M., J. Org. Chem., 1971, 36, 1765.
- Duran, R. and Gramain, P., Makromol. Chem., 1987, 188, 2001. 29
- Niemelä, S., Selkälä, R., Sundholm, F. and Taivainen, J., 30. J. Macromol. Sci., Pure Appl. Chem., 1992, A29, 1071
- Sander, S. and Karo, W., Organic Functional Group Prepara-31. tions. Academic Press New York, 1968, p. 137.
- Nakano, T., Hasegawa, T. and Okamoto, Y., Macromolecules, 32 1993. 26. 5494.
- Hutchins, R. O. and Taffer, J. M., J. Org. Chem., 1993, 48, 1360. 33.
- 34. Doyle, F. P., Holland, D. O., Mansford, K. R. L., Nayler, J. H. C. and Queen, A. J., J. Chem. Soc., 1960, 2260.